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ABSTRACT A simple evolutionary process can discover
sophisticated methods for emergent information processing in
decentralized spatially extended systems. The mechanisms
underlying the resulting emergent computation are explicated
by a technique for analyzing particle-based logic embedded in
pattern-forming systems. Understanding how globally coor-
dinated computation can emerge in evolution is relevant both
for the scientific understanding of natural information pro-
cessing and for engineering new forms of parallel computing
systems.

Many systems in nature exhibit sophisticated collective infor-
mation-processing abilities that emerge from the individual
actions of simple components interacting via restricted com-
munication pathways. Some often-cited examples include ef-
ficient foraging and intricate nest-building in insect societies
(1), the spontaneous aggregation of a reproductive multicel-
lular organism from individual amoeba in the life cycle of the
Dictyostelium slime mold (2), the parallel and distributed
processing of sensory information by assemblies of neurons in
the brain (3), and the optimal pricing of goods in an economy
arising from agents obeying local rules of commerce (4).
Allowing global coordination to emerge from a decentralized
collection of simple components has important advantages
over explicit central control in both natural and human-
constructed information-processing systems. There are sub-
stantial costs incurred in having centralized coordination, not
the least being (i) speed (a central coordinator can be a
bottleneck to fast information processing), (ii) robustness (if
the central coordinator is injured or lost, the entire system
collapses), and (iii) equitable resource allocation (a central
controller must be allocated a lion's share of system resources
that otherwise could go to other agents in the system) (e.g., see
ref. 5). However, it is difficult to design a collection of
individual components and their local interactions in a way
that will give rise to useful global information processing. It is
not well understood how such apparent complex global coor-
dination emerges from simple individual actions in natural
systems or how such systems are produced by biological
evolution. This paper reports the application of new methods
for detecting computation in nonlinear processes to a simple
evolutionary model that allows us to address these questions
directly. The main result is the evolutionary discovery of
methods for emergent global computation in a spatially dis-
tributed system consisting of locally interacting processors.
We use the general term "emergent computation" to de-

scribe the appearance of global information processing in such
systems (see refs. 6 and 7). Our goal is to understand the
mechanisms by which evolution can discover methods of
emergent computation. We are studying this question in a
theoretical framework that, while simplified, still captures the
essence of the phenomena of interest. This framework requires
(i) an idealized class of decentralized system in which global
information processing can arise from the actions of simple,
locally connected units; (ii) a computational task that neces-

sitates global information processing; and (iii) an idealized
computational model of evolution.
One of the simplest systems in which emergent computation

can be studied is a one-dimensional binary-state cellular
automaton (CA) (8)-a one-dimensional spatial lattice of N
identical two-state machines ("cells"), each of which changes
its state as a function only of the current states in a local
neighborhood of radius r. The lattice starts out with an initial
configuration (IC) ofN cell states (Os and ls). This configu-
ration changes in discrete time steps according to the CA
"rule"-a look-up table mapping neighborhood state config-
urations to update states. At each time step, all cells examine
their local neighborhoods (subject to specified boundary con-
ditions), consult the look-up table, and update their states
simultaneously. The CA's radius places an upper boundary on
the speed of information transmission through the lattice. It
also limits the sophistication of the local dynamics: the number
of look-up table entries is 22r'+1. Thus, fixing r << N constrains
the sophistication of a CA's explicit information processing.
A simple-to-define computational task for CAs that requires

global information processing is deciding whether or not the IC
contains more than half ls. We call this the Pc = 1/2 task, with
Pc denoting a threshold density of ls in the input. If po denotes
the density of ls in the IC, the desired behavior is for all cells
to quickly change to state 1 if po > Pc and to quickly change to
state 0 if po < Pc. The Pc = 1/2 task requires global commu-
nication, since po is a global property of the entire lattice; no
linear combination of local computations-such as the cells
computing the majority of ls in their neighborhood-can solve
this problem. Designing an algorithm to perform the Pc = 1/2
task is trivial for systems with a central controller of some kind,
such as a standard computer with a counter register or a neural
network with global connectivity. But it is difficult to design a
decentralized, spatially extended system such as a CA to
perform this task, since there is no central counter or global
communication built in. It can be shown that no finite-radius
CA can perform this task perfectly across all lattice sizes (9,
10), but even to perform this task well for a fixed lattice size
requires more powerful computation than can be performed
by a single cell or any linear combination of cells. Since the ls
can be distributed throughout the CA lattice, the CA must
transfer information over large space-time distances (-N),
and information from distant parts of the lattice must interact
so as to perform the computation. With r << N, such infor-
mation transmission and interaction can be accomplished only
through the coordination of emergent high-level signals. Thus,
this task is well suited for investigating the ability of an
evolutionary process to design CAs with sophisticated emer-
gent computational abilities.
One class of computational models of evolution are genetic

algorithms (GAs) (11), which evolve a population of candidate
solutions to an optimization problem by propagating the most
"fit" candidates to the next generation via genetic modifica-
tions. We carried out a set of experiments in which a GA was
used to evolve one-dimensional binary-state r = 3 CAs (with

Abbreviations: CA, cellular automaton; IC, initial configuration;
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spatially periodic boundary conditions) to perform the Pc =

1/2 task. This GA, while highly idealized, contained the
rudiments of selection and variation: crossover and mutation
worked on the genotype (the 128-bit string encoding the CA
look-up table), whereas selection was according to the fitiwss
of the phenotype (the CA's spatiotemporal behavior on JiV
= 149 cell lattice). The GA started out with an initial popu-
lation of 100 strings ("rules") randomly generated with a

uniform distribution over the fraction of ls in the string. The
"fitness" of each rule was computed by iterating the corre-
sponding CA on 100 randomly chosen ICs uniformly distrib-
uted over po E [0, 1], half with po < pc (correct classification:
all Os) and half with po > Pc (correct classification: all ls), and
by recording the fraction of correct classifications performed
in a maximum of slightly more than 2N time steps. The fittest
strings in the population were selected to survive and were
randomly paired to produce offspring by crossover, with each
bit in the offspring subject to a small probability of mutation.
This process was iterated for 100 "generations"-a "run"-
with fitnesses estimated from a new set of ICs at each
generation. Three hundred runs were performed starting with
different random-number seeds. Details and justification of
the experimental procedure have been given in ref. 9.
As reported previously (9, 12), the GA evolution proceeded

through a succession of computationally distinct epochs. On
most runs the end result was one of two computational
strategies: settle to a fixed point of all Os (is), unless there is
a sufficiently large block of adjacent or almost adjacent ls (Os)
in the IC; if so, expand that block. These strategies rely on the
presence or absence of blocks as predictors of p0. They do not
count as sophisticated examples of emergent computation in
CAs: all of the computation is done locally in identifying and
then expanding a sufficiently large (- 2r + 1) block. After each
run we computed a measure of the quality of the best rules in
the final generation: the "unbiased performance" 9P149,104(4),
which is the fraction of correct classifications performed by
rule within approximately 2N time steps with N = 149 over
104 ICs randomly chosen from an unbiased distribution over p.
The unbiased distribution meant that most ICs had pO 1/2.

These are the most difficult cases, and thus gPN,104(4) gives a
lower boundary on other measures of a rule's performance.
The highest measured Q1g49,104(0) for block-expanding rules
was 0.685 ± 0.004. Performance decreased dramatically for
larger N, since the size of the block to expand and the velocity
of expansion was tuned by the GA for N = 149 (see ref. 9). In
general, any rule that relies on spatially local properties will not

scale well with lattice size on the pc = 1/2 task. This is shown
in Table 1 for a typical block-expanding rule 4)exp discovered
by the GA.
A major impediment for the GA was an early breaking of

symmetries in the Pc = 1/2 task for short-term gain in fitness
by specialization for high or low density (9, 12). This and other
impediments seemed to indicate that this evolutionary system
was incapable of discovering higher performance CAs. How-
ever, we subsequently discovered that in 7 of 300 runs, the GA
evolved significantly more sophisticated methods of emergent
computation. Again, the evolution proceeded via a series of
epochs connected by distinct computational innovations. (A
detailed analysis of the evolutionary history will be presented
elsewhere.) 9PN,1o4(4O) values for three values ofN are shown in
Table 1 for the best rules (011102, 417083, 4)loo) in three of these
runs. The higher 9PN,104(o) values and the improved scaling
with increasing N indicates a new level of computational
sophistication above that of the block-expanding rules. Also
given for comparison are two human-designed CAs: 4)maj

computes the local majority of ls in the neighborhood and,
since it maps almost all configurations to small stationary
blocks of ls and Os, has 91N,104(0) = 0.000 for all N; GKL, one
of the best performing rules known, has the highest perfor-
mance listed, though it was constructed not for the Pc = 1/2
task but for a study of ergodicity and reliable computation in
CAs (13). Space-time diagrams illustrating the behavior of
4)17083 and 4ioo are given in Fig. 1. The space-time behavior of
41oo is remarkably similar to that of GKL (see ref. 12). Its lower
performance arises from factors such as asymmetries in the
rule table.
How are we to understand the emergent computation these

more successful CAs are performing? In previous work (14-
16), we developed automated methods for discovering com-
putational structures embedded in space-time behavior. Like
many spatially extended natural processes, cellular automata
configurations often organize over time into spatial regions
that are dynamically homogeneous. Typically, the discovery of
the underlying regularities requires automated inference meth-
ods. Sometimes, though (e.g., Fig. 1), these regions are obvious
to the eye as "domains": regions in which the same recurring
"pattern" appears. To understand this phenomenon and to
automate its discovery, the notion of "domain" was formalized
(15) by adapting computation theory to CA dynamics. There,
a domain's "pattern" is described by using the minimal deter-
ministic finite automaton (DFA) (17) that accepts all and only
those configurations that appear in the domain. Such domains

Table 1. Measured values of 9PN,104(o) at various N for six different r = 3 rules, the middle four discovered
during different runs of the GA

Rule table
CA (r = 3) Symbol hexadecimal code 9P149,104 9P599,104 9'999,104

Majority Omaj 00010117 01171777
01171777 177f7fff 0.000 0.000 0.000

GA-discovered
Expand 1-blocks 4)exp 05054083 05c90101

200bOefb 94c7cff7 0.652 0.515 0.503
Particle-based 4)11102 10000224 41170231

155f57dd 734bffff 0.742 0.718 0.701
4)17083 03100100 lfaOO013

331f9fff 5975ffff 0.755 0.696 0.670
41oo 05040587 05000f77

03775583 7bffb77f 0.769 0.725 0.714
GKL ()GKL 005fOO5f 005fO05f

005fff5f 005fff5f 0.816 0.766 0.757

ForN = 149, the standard deviation is 0.004; it is higher for larger N. 4exp expands blocks of is; 0)maj computes
the majority of is in the neighborhood; all of the other rules implement more sophisticated strategies involving
particle interactions. To recover the 128-bit string giving the CA look-up table outputs, expand each hexadecimal
digit to binary. The neighborhood outputs then are given in lexicographic order starting from neighborhood
0000000 at the leftmost bit in the 128-bit binary string. 4GKL is a rule designed by Gacs-Kurdyumov-Levin (see
ref. 13).
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FIG. 1. Space-time diagrams showing the behavior of two CAs, discovered by the genetic algorithm on different runs, that employ embedded
particles for the nonlocal computation required in density classification. Each space-time diagram plots lattice configuration iterates over a range
of time steps, with is given as black cells and Os as white cells; time increases down the page. Both start with the same initial configuration (po

0.483). (Left) 417083 correctly classifies this low-p configuration by going to a fixed all-Os configuration by time 250 (not shown) after the gray

region dies out. (Right) In contrast, CA 4'oo misclassifies it by going to all is, despite its better average performance.

are called "regular," since their configurations are members of
the regular language recognized by the DFA. More precisely,
a regular domain A is a set of configurations that on an infinite
lattice is temporally invariant, A = +(A), and whose DFA has
a single recurrent set of states that is strongly connected.

Regular domains play a key role in organizing both the
dynamical behavior and the information-processing properties of
CAs. Once a CA's regular domains have been detected (i.e., that
level of structure has been understood), nonlinear transducers
(filters) can be constructed to remove them, leaving just the
deviations from those regularities. The resulting filtered space-
time diagram reveals the propagation of domain "walls." If these
walls remain spatially localized over time, then they are called
"particles" (16). (We emphasize that such embedded particles are
qualitatively different from those exhibited by CAs that have been
hand-designed to perform computations (e.g., see refs. 18-21).
Embedded particles are a primary mechanism for carrying in-
formation (or "signals") over long space-time distances. This
information might indicate, for example, the result of some local
processing that has occurred at an early time. Logical operations
on the signals are performed when the particles interact. The
collection of domains, domain walls, particles, and particle inter-
actions for a CA represents the basic information-processing
elements embedded in the CA's behavior-the CA's "intrinsic"
computation.
CA 417083 of Fig. 1 Left has three domains {A°, Al, A2},

which are given in Table 2. There are five stable particles {a,

y, 8, q, and ,t} and one unstable "particle" {,B} defined in
Table 2 as walls between two domains. Note that, given the CA
rule code (Table 1), it can be proved that the domains are
time-invariant sets and that the stable particles are spatially
localized time-invariant sets for the corresponding CA (16).
With this knowledge, the space-time diagram of Fig. 1 Left can

be filtered to remove the domains. The result, shown in Fig. 2,
reveals the particles and their interactions. Table 2 lists the six
particle interactions that have been identified. The filtering
analysis reveals a particle-based logic that emerges over time
and supports the required computational processing-
information storage and propagation over large space-time
distances, logical operations, and so on-necessary for high
fitness in approximating density classification. Roughly, 017083
successively classifies "local" densities with a locality range
that increases with time. In regions where there is some
ambiguity, signals (in the form of particles) are propagated,
indicating that the classification is to be made at a larger scale
via particle interactions. Two examples of such interactions are
shown in Fig. 2 Left and explained in the legend.
There are a number of constraints imposed by the "cellular"

nature of CAs that the GA balances in its evolutionary search
for high fitness. First, classification of local configurations with
ambiguous density must be deferred to later times and larger
spatial scales to provide a context in which information is
available to disambiguate the local classification. Second,
signals are required in the form of propagating particles, since
local operations at later times have to be spatially local:
decisions are made when particles come within an interaction
range set by the CA radius. Third, the particle interactions
must be built into the look-up table, which adds constraints
that are nonlocal in the genomic representation and that must
be compatible with domain stability and particle propagation.
Fourth, the particles must be stable to preserve information
over space-time. The result is a delicate balance that must be
maintained by the GA in a CA look-up table that supports
sophisticated particle-based information processing. Given
these constraints, which are nonlocal and require specific
output bit settings in the rule table string, it is striking that the

Table 2. The domains, particles, and particle interactions that support the emergent logic in the CA (017083) shown in Fig. 1 Left
Particle Particle interaction (by type)

Domain Symbol Velocity Graphics Annihilation Decay Reaction
AO°=O* a -AAA0 1 vy. -+ * 0+ n a +6 -*j
Al = 1* f3A0A1 0 0 ,+ -*0 Z + y a
A2 = (10001)* ly A2A0 -2 q1 + a-

8 A0A2 '/2
A2A1 4 /34\8ee
A'A2 3.

(et)* means any number of repetitions of string w. The table includes only those structures that dominate the CA's spatiotemporal behavior. Very
infrequently occurring structures, such as the checkerboard domain A3 = (10)* and the four dislocations within A2 are not listed because they do
not contribute measurably to the CA's classification performance. Under "Particles," the graphic associated with each particle provides a key to
Fig. 2. Note that the structure of each particle's graphic is determined by the nonlinear transducer. 0 denotes spatial configurations without particles.
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FIG. 2. Analysis of the emergent logic for density classification in CA 4)17083 (Fig. 1 Left). This CA has three domains, six particles, and six particle
interactions, as noted in Table 2. (Left) This figure gives the same space-time diagram as in Fig. 1 Left except that the domains have been filtered
out by using an 18-state nonlinear transducer constructed as described in ref. 16. The resulting diagram reveals the particle interactions that support
the long-range spatiotemporal correlation for density classification at the associated performance level (Table 1). (Right Upper) The particle
interaction a + 8 --> IL implements the "logic" of mapping a spatial configuration representing high, low, and then ambiguous densities to a
high-density signal A. (Right Lower) Similar detail is shown for the particle interaction ,u + -y -- a that maps a configuration representing high,
ambiguous, and then low density to an ambiguous-density signal a.

GA evolved particle-based computation that performed nearly
as well as the best-performing human-designed CA.
The particle-based computation analysis also indicates why

the CAs discovered by the GA, as well as the human-designed
CA, fail to achieve higher 9TN,1o4(4). One reason, of course, is
that the emergent logic can be incorrect. Even small errors in
the particle velocities or interactions, for example, are com-
pounded over time and lead to misclassifications. More im-
portantly, at the very earliest iterations, before the CA behav-
ior has condensed into configurations consisting only of do-
mains and particles, local configurations larger than the
neighborhood size can lead to incorrect positioning and se-
lection of domains. The ensuing emergent logic operates on
these errors and, even if it is correct, produces a misclassifi-
cation. In this way, the analysis methods of refs. 15 and 16 allow
us to explain how particular mechanisms in CAs lead to
increased fitness and so survivability under the GA.
From the perspective of engineering applications, the par-

ticular GA used here was not an efficient automated designer
of particle-based computation, since the rate of production of
these CAs is low, though reliable. A primary impediment is the
GA's breaking of symmetries in early generations for short-
term fitness gain. This resulted in the populations' move to
asymmetric, low-performance block-expanding CAs. Repair-
ing the broken symmetries required an unlikely coordinated
change in a large number of look-up table bits. We have
proposed (9) a number of improvements to the GA, including
the design of GA fitness functions and genomic representa-
tions that respect known task symmetries, but we also noted
that symmetry-breaking may be a necessary part of some
evolutionary pathways. On the subset of runs on which parti-
cle-based CAs were evolved, the GA was able to respect the
symmetries necessary for higher performance and better scal-
ing; this result and the success of our analysis of embedded
computation are encouraging for the prospect of evolving
more powerful particle-based computational systems for real-
world tasks. Moreover, in work that will be reported elsewhere,
the GA discovered perfectly performing CAs (on a high
fraction of runs) that used particle-based computation on a
different task: to rapidly achieve stable global synchronization
between local processors.
The main result reported here is a simplified evolutionary

process's discovery of methods for emergent global computa-
tion in a spatially distributed system consisting of locally
interacting processors. Despite numerous phenomena that

indicate nature has been confronted by analogous design tasks
and solved them, to date only human-designed CAs have been
used for performing such computations (see refs. 19-21). In
contrast to the engineering approach of building particles and
their interactions into CAs, a key tool in our analysis was the
ability to detect structures embedded in CA spatiotemporal
behavior that support emergent computation.
A simple, but general lesson was learned: when confronted

with constraints, evolutionary processes need to innovate
qualitatively new mechanisms that transcend those constraints.
The locality of communication in CAs imposes a constraint on
communication speed. The GA's innovation was to discover
CAs that performed information processing over large space-
time distances using particles and their interactions-a wholly
new level of behavior that is distinct from the lower level of
spatial configurations. In this way, our analysis of particle-
based computation demonstrated how complex global coor-
dination can emerge within a collection of simple individual
actions. In a complementary fashion, our GA simulations
demonstrated how an evolutionary process, by taking advan-
tage of certain nonlinear pattern-forming propensities of CAs,
can produce this new level of behavior through a succession of
innovations that build up the delicate balance necessary for
effective emergent computation.
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